Дмитрий
Дмитрий Подписчиков: 4209
Рейтинг Рейтинг Рейтинг Рейтинг Рейтинг 57.6к

Из-за чего прогнозы по коронавирусу не точны: объясняют математики

50 дочитываний
4 комментария
Эта публикация уже заработала 3,00 рублей за дочитывания
Зарабатывать

Здравствуйте мои дорогие подписчики и гости сайта 9111.ru!


Доверять расчетам полностью пока рано, но они всё равно нужны

На прогноз влияет множество факторов, в том числе и поведение людей

Коллаж: Илья Давыдов / Сеть городских порталов

*********************************************************************************

С самого начала пандемии прогнозы о росте заболеваемости начали давать ученые из разных уголков планеты. И все их прогнозы менялись со временем. Например, эксперты Сингапурского университета технологии и дизайна (SUTD) прогнозировали, что эпидемия в России завершится к 20 июня, а в мире — к 9 декабря, потом несколько раз переносили срок и в конце концов аннулировали прогнозы. Специалисты РХТУ имени Д. И. Менделеева прогнозировали конец эпидемии в России в июле. Один из самых свежих прогнозов дали эксперты НТИ СПбПУ: по мнению ученых, плато не предвидится в ближайшее время, эпидемия пойдет на спад лишь к февралю.

Как строятся модели

Начнем с того, что, поскольку математические модели всегда заменяют оригинал, при построении существует некое упрощение. Математическая модель — это не обязательно прогноз.

— Все модели можно классифицировать разными способами. Можно выделить модели оптимизации (их могут использовать, например, в инвестициях), есть кибернетические модели (они часто используются для анализа поведения объекта при различных внешних воздействиях). Еще один класс моделей можно условно назвать моделью трудноформализуемых объектов: для их изучения нужно включить дополнительное звено — эксперта. И последнее — модели прогноза. Они нужны для того, чтобы, зная текущее состояние и какие-то граничные условия, определить поведение изменения системы, — говорит Михаил Семенов.

СПРАВКА
Михаил Семенов — кандидат физико-математических наук, доцент отделения экспериментальной физики Томского политехнического университета.

Именно эти модели используются для построения прогнозов заболеваемости. Но, как уже говорилось, такая классификация — лишь одна из многих. Математическую модель для прогноза тоже можно построить разными способами.

— Подходов для моделирования может быть масса. Мы можем использовать аппарат дифференциальных уравнений, можем использовать аппарат теории графов или теории вероятности. Именно поэтому разные прогнозы могут отличаться, — объясняет Семенов.

Еще один аспект — различие входных данных. Эксперты могут использовать от трех–пяти до нескольких сотен параметров.

— Чтобы модель была адекватна истинному положению распространения инфекции, нужны достаточно точная статистика, сколько именно заболевших, и внешние факторы, причем не просто качественно, а именно количественно влияют на распространение инфекции. Например, индекс самоизоляции. Конечно, он влияет — сколько человек в среднем на улице, в общественных местах находится, как они контактируют, — объясняет Сергей Соколов.

СПРАВКА
Сергей Соколов — кандидат физико-математических наук, заведующий кафедрой медицинской физики, информатики и математики Уральского государственного медицинского университета.

Ученый говорит, что, помимо индекса самоизоляции, необходимо знать вероятность заражения при контакте с больным человеком. Изменить картину могут также охват тестами, вводимые (или отменяемые) противоэпидемические меры и другие факторы.

Еще одно ключевое отличие в подходах к прогнозированию — что именно рассчитывают аналитики. Это может быть как динамика распространения болезни (количество новых случаев в сутки), так и число активных случаев (количество болеющих человек в моменте). Научная группа Алексея Боровкова как раз выстраивает именно такой прогноз.

СПРАВКА
Алексей Боровков — кандидат технических наук, руководитель Центра компетенций НТИ «Новые производственные технологии» на базе Санкт-Петербургского политехнического университета Петра Великого, глава группы по моделированию ситуации с коронавирусом.

Почему математическая модель не дает точный прогноз COVID-пандемии

— В чем еще сложность моделирования COVID-19 — это пока новая инфекция, и она может протекать бессимптомно, но человек может заражать — с одной долей вероятности. Больной средней тяжести — с другой. Симптомы опять же не всегда явные, кто-то может перепутать с обычной ОРВИ. А с корью, например, всё однозначно: у человека температура и сыпь — корь. Я в свое время знакомился с математическими моделями распространения кори — там проблем нет. Здесь же я читал статьи и пробовал сам: любой фактор начинаешь менять, например, количество контактов в день, в большую или меньшую сторону — то быстро затухает распространение, то взлетает, — говорит Соколов.

То есть в принципе математическое моделирование может работать достаточно хорошо, но только в том случае, если используется большое количество параметров. И пока одна из проблем в том, что не все они очевидны.

— Надо понимать, что мы моделируем поведение социально-экономической системы, в которой многое зависит от решений органов власти и реального поведения людей. Любые изменения этих факторов могут существенно повлиять на прогноз. Для нас же это означает, что нужно сделать калибровку математической модели, уточнить переменные во времени коэффициенты, и мы тотчас получим уточненный набор кривых, получим другие, уточненные, оптимистичные и пессимистичные кривые, — объяснил в интервью «Известиям» Алексей Боровков.

Он привел в пример Москву, где сейчас ситуация развивается по средней кривой. Если же она перейдет на пессимистичную кривую, то максимальное число активных больных в столице будет 8 декабря и составит порядка 260 тысяч. Это 223% от первого пика, который был 19 мая.

— В биоинформатике зачастую мы можем одну и ту же программу взять, запустить на одних и тех же данных сегодня и через месяц и получить разные результаты, потому что за это время программа была как-то усовершенствована, было уточнение в исходных данных, — говорит Михаил Семенов.

Когда получится построить верный прогноз

— Я думаю, что полгода–год еще нужно, чтобы понять, какие конкретно факторы имеют наибольшее значение. Потому что у каждой инфекции свои конкретные параметры влияют на скорость её распространения. С новыми эпидемиями рановато ориентироваться на математические модели, — считает Сергей Соколов.

Но математические модели всё равно полезны уже сейчас. С их помощью проследить какую-то тенденцию: например, если увеличить уровень самоизоляции — заболеваемость снижается.

Всем спасибо! Если понравилась публикация подписывайтесь и ставьте палец вверх!


Источник: www.59.ru

4 комментария
Понравилась публикация?
5 / -1
нет
0 / 0
Подписаться
Донаты ₽
Комментарии: 4
Отписаться от обсуждения Подписаться на обсуждения
Популярные Новые Старые

У нас врачи сами не знают чем пневмония от короны отличается.

+4 / 0
картой
Ответить
раскрыть ветку (0)

Интересно.

+2 / 0
картой
Ответить
раскрыть ветку (0)
DELETE

Почему не возможно прогнозировать коронавирус? Да потому что выдумать то чего нет, бараны не могут.

раскрыть ветку (0)

Не знаю, как там с математикой, но коронабесие - чистой воды политика.

+2 / 0
картой
Ответить
раскрыть ветку (0)

"Вирус" Экономического Кризиса: COVID-19 и Его Разрушительное Влияние на Мировую Экономику

Пандемия COVID-19 стала не только глобальной трагедией в области здравоохранения, но и мощным катализатором экономического кризиса, который затронул практически все страны мира. Подобно вирусу,...

Новый вирус в Китае.

Сегодня появилась новость, что в Китае обнаружили новый корона вирус, который может заражать так же как COVID 19.Вирус был обнаружен у летучих мышей. Ученые проводят исследования в лабораториях.

Коронавирус – 2025

Внимание эпидемиологов привлекла пристальное внимание новая разновидность коронавируса XFG, получившего название «Стратус». Базовым симптомом служит характерная осиплость голоса, возникающая почти у 65-70 %...

Пользователям WhatsApp* грозит быстрая блокировка из-за нового вируса под видом документов

Команда специалистов по кибербезопасности Trend Micro бьет тревогу: в WhatsApp* объявился новый зловред под кодовым именем SORVEPOTEL. И он не просто ворует данные или шифрует файлы, как многие другие вирусы.